Abstract

The effects of angiotensin-converting enzyme (ACE) inhibitors on endothelial autacoid formation were determined in human cultured endothelial cells and in endothelium-intact bovine coronary arteries under resting conditions and after stimulation with bradykinin. Incubation of cultured human endothelial cells with moexiprilat or ramiprilat (0.3 microM) caused a maintained increase in resting intracellular calcium [Ca2+]i, which was prevented by the selective B2-receptor antagonist Hoe 140 (0.1 microM). Both ACE inhibitors also significantly enhanced the increase in [Ca2+]i elicited by bradykinin (3 nM). In parallel with their effect on resting [Ca2+]i, moexiprilat and ramiprilat both induced an increase in intracellular cyclic GMP (cGMP). This increase was prevented by Hoe 140 (0.1 microM) and was abolished by NG-nitro-L-arginine (30 microM), indicating a kinin-induced nitric oxide (NO) formation in this response. The elevation in [Ca2+]i also led to an enhanced production of prostacyclin (PGI2), as indicated by an increase in the concentration of 6-keto prostaglandin F1 alpha (PGF1 alpha) in the cell supernatant. Similar effects of the ACE inhibitors on endothelial autacoid production were observed in endothelium-intact bovine coronary arteries. Like bradykinin (30 nM), moexiprilat (0.3 microM) elicited a nearly twofold increase in the cGMP content of these arteries, which was abolished by both NG-nitro-L-arginine and removal of the endothelium. The functional consequences of this ACE inhibitor-induced increase in vascular cGMP were reflected by a distinct relaxation of arteries preconstricted with PGF2 alpha.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.