Abstract

A diversified series of experiments was conducted to determine the potential role of endothelin-1 (ET-1) in ovine luteal function. Endothelin-1 inhibited basal and LH-stimulated progesterone production by dispersed ovine luteal cells during a 2-h incubation. This inhibition was removed when cells were preincubated with cyclo-D-Asp-Pro-D-Val-Leu-D-Trp (BQ123), a highly specific endothelin ET(A) receptor antagonist. Administration of a luteolytic dose of prostaglandin F(2alpha) (PGF(2alpha)) rapidly stimulated gene expression for ET-1 in ovine corpora lutea (CL) collected at midcycle. Intraluteal administration of a single dose of BQ123 to ewes on Day 8 or 9 of the estrous cycle mitigated the luteolytic effect of PGF(2alpha). Intramuscular administration of 100 microg ET-1 to ewes at midcycle reduced plasma progesterone concentrations for the remainder of the estrous cycle. Following pretreatment with a subluteolytic dose of PGF(2alpha), i.m. administration of 100 microg ET-1 caused a rapid decline in plasma progesterone and shortened the length of the estrous cycle. These data complement and extend previously published reports in the bovine CL and are the strongest evidence presented to date in support of a role for ET-1 in PGF(2alpha)-mediated luteal function in domestic ruminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.