Abstract

Endothelins (ETs) are a family of peptides with 21-amino-acid residues. ET-1 was identified as a potent vasoconstrictor produced by vascular endothelial cells. Three distinct isoforms of ET, i.e. ET-1, ET-2 and ET-3, have been found to exist in a variety of tissues. ET was later found to cause contraction as well as relaxation of smooth muscle in many physiologic systems. In the gastrointestinal tract, ET causes contraction and/or relaxation of the esophagus, stomach, ileum and colon. In the hepatobiliary system, ET causes contraction of the portal vein, hepatic stellate cells, gallbladder and common bile duct. In mammalian species, two classes of ET receptors, ET(A) and ET(B), have been cloned. ET(A) receptors have higher affinities for ET-1 and ET-2 than ET-3, while ET(B) receptors have the same affinities for ET-1, ET-2 and ET-3. In the gastrointestinal system, ET causes smooth muscle contraction through interaction with ET(A) receptors, ET(B) receptors or both ET(A) and ET(B) receptors, depending on the tissues and species. In addition to contraction, ET causes smooth muscle relaxation through interaction with ET(A) receptors or ET(B) receptors. At the present time, there are no studies showing that ET causes smooth muscle relaxation through interaction with both ET(A) and ET(B) subtypes. ET induces contraction in most of the non-sphincter muscle except the fundus of the stomach. On the other hand, ET causes relaxation and contraction in the lower esophageal and internal anal sphincters. ET may play an important role in the control of human gastrointestinal motility and portal vein pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.