Abstract

Restenosis and thrombosis formation after cardiovascular devices implantation continue to be problematic. Although various platforms and parameters of cardiovascular devices have been designed and optimized over the years, postoperative complications are hard to avoid. The native vascular endothelium always provide a nonthrombogenic surface as well as prevent intimal overproliferation, thereby, the presence of a confluent endothelial cell layer on material surfaces have been widely accepted as an ideal approach to improve the biocompatibility of implanted cardiovascular materials. Endothelialization on biomaterial surfaces is initially developed by in vitro cell seeding. However, numerous no-perfect parts of this method are existed for clinical use. The emergency of endothelial progenitor cells may provide a promising way for setting these limitations. Over the last decades, countless researches about EPCs-based in vivo induced self-endothelialization have been reported and mainly focused on cellular therapy, pharmacological therapy, materials designing, or surface biofunctional modification. This review details the development of endothelialization on cardiovascular material surfaces from in vitro to in vivo. Endothelialization progress on the basis of molecular biological level and bioinformatics theory is expected to be the key point in the coming decades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.