Abstract

The Na+/Ca2+ exchanger (NCX) may be an important modulator of Ca2+ entry and exit. The present study investigated whether NCX was affected by prostacyclin and nitric oxide (NO) released from the vascular endothelium, as NCX contains phosphorylation sites for PKA and PKG. Rat aortic rings were set up in organ baths. Tension was measured across the ring with a force transducer. Lowering extracellular [Na+] ([Na+]o) to 1.18 mM induced vasoconstriction in rat endothelium-denuded aortic rings. This effect was blocked by the NCX inhibitor KB-R7943 (2-2-[4-(4-nitrobenzyloxy)phenyl] ethyl isothiourea methanesulphonate; 1 microM). In endothelium-intact aortic rings, decreasing [Na+]o did not constrict the aortic rings significantly, but after treatment with the guanylate cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; 1 microM) or the NOS inhibitor L-NAME (N(omega)-nitro-L-arginine methyl ester; 50 microM), a vasoconstriction that was similar in size to that in endothelium-denuded preparations was evident. The vasorelaxation induced by the NO donor sodium nitroprusside sodium nitroprusside dihydrate (30 nM) was the same in the endothelium-denuded aortic rings preconstricted with either low Na+ (1.18 mM), the thromboxane A2 agonist U46619 (9,11-dideoxy-9alpha, 11alpha-methanoepoxy prostaglandin F(2alpha); 0.1 microM) or high K+ (80 mM). The results suggest that the endothelium inhibits NCX operation via guanylate cyclase/NO. This is stronger than for other constrictors such as phenylephrine and may relate to concomitant NCX-stimulated NO release from the endothelium. This finding may be important where NCX operates in reverse mode, such as during ischaemia, and highlights a new mechanism whereby the endothelium modulates Ca2+ homoeostasis in vascular smooth muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.