Abstract

In this work, a small diameter tubular vascular graft (inner diameter < 5 mm) was prepared from electrospun polyvinyl alcohol (PVA) containing graphene. Nanofibrous nanocomposite scaffolds showed high porosity with an average pore size of 5–6 nm and exhibited exfoliated morphology. Measurement of the water contact angle of the fibrous nanocomposite scaffold indicated a significant change in hydrophilicity on the addition of hydrophobic additives. To examine further in vitro biocompatibility, endothelial cells were seeded on the flat and tubular nanocomposite scaffolds and cultured over 4 days. The results indicated that the cells could adhere and proliferate well on nanocomposite scaffolds than neat PVA. The 3-(-4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay exhibited no toxic effect of materials used in scaffolds while by loading graphene up to 3 wt% to PVA, cell proliferation enhanced considerably over 96 h. This approach, combining artery-like structure and efficient endothelization, might contribute to the clinical translation of tissue engineering vascular graft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.