Abstract

Damage and activation of lung endothelium can lead to interstitial edema, infiltration of inflammatory cells into the interstitium and airways, and production of inflammatory metabolites, all of which propagate airway inflammation in a variety of diseases. We have previously determined that stimulation of human microvascular endothelial cells from lung (HMVEC-L) results in activation of a calcium-independent phospholipase A(2) (iPLA(2)), and this leads to arachidonic acid release and production of prostaglandin I(2) (PGI(2)) and platelet-activating factor (PAF). We stimulated lung endothelial cells isolated from iPLA(2)beta-knockout (KO) and wild type (WT) mice with thrombin and tryptase to determine the role of iPLA(2)beta in endothelial cell membrane phospholipid hydrolysis. Thrombin or tryptase stimulation of WT lung endothelial cells resulted in increased arachidonic acid release and production of PGI(2) and PAF. Arachidonic acid release and PGI(2) production by stimulated iPLA(2)beta-KO endothelial cells were significantly reduced compared to WT. Measured PLA(2) activity and PGI(2) production by iPLA(2)beta-KO cells were suppressed by pretreatment with (R)-bromoenol lactone (R-BEL), which is a selective inhibitor of iPLA2gamma. In contrast to the increase in PAF production induced by stimulation of WT endothelial cells, none was observed for KO cells, and this suggests that endothelial PAF production is entirely dependent on iPLA(2)beta activity. Because inflammatory cell recruitment involves the interaction of endothelial cell PAF with PAF receptors on circulating cells, these data suggest that iPLA(2)beta may be a suitable therapeutic target for the treatment of inflammatory lung diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.