Abstract

A purely endoluminal method of GI bypass would be desirable for the treatment of obstruction, obesity, or metabolic syndrome. We have developed a technology based on miniature self-assembling magnets that create large-caliber anastomoses (Incisionless Anastomosis System [IAS]). The aim of this study was to evaluate procedural characteristics of IAS deployment and long-term anastomotic integrity and patency. We performed a 3-month survival study of Yorkshire pigs (5 interventions, 3 controls). Intervention pigs underwent simultaneous enteroscopy/colonoscopy performed with the animals under intravenous sedation. The IAS magnets were deployed and coupled with reciprocal magnets under fluoroscopy. Every 3 to 6 days pigs underwent endoscopy until jejunocolonic anastomosis (dual-path bypass) creation and magnet expulsion. Necropsies and histological evaluation were performed. The primary endpoints were technical success; secondary endpoints of anastomosis integrity, patency, and histological characteristics were weight trends. Under intravenous sedation, endoscopic bypass creation by using IAS magnets was successfully performed in 5 of 5 pigs (100%). Given porcine anatomy, the easiest dual-path bypass to create was between the proximal jejunum and colon. The mean procedure time was 14.7 minutes. Patent, leak-free anastomoses formed by day 4. All IAS magnets were expelled by day 12. All anastomoses were fully patent at 3 months with a mean diameter of 3.5 cm. The mean 3-month weight was 45 kg in bypass pigs and 78 kg in controls (P = .01). At necropsy, adhesions were absent. Histology showed full re-epithelialization across the anastomosis without fibrosis or inflammation. Large-caliber, leak-free, foreign body-free endoscopic intestinal bypass by using IAS magnets can be safely and rapidly performed in the porcine by model using only intravenous sedation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.