Abstract
In dilated cardiomyopathy and in athlete's heart, progressive LV dilatation is accompanied by rightward displacement of the diastolic LV pressure-volume relation. In dilated cardiomyopathy, an increase in diastolic LV stiffness can limit this rightward displacement thereby decreasing LV systolic performance. Because nitric oxide (NO) reduces diastolic LV stiffness, the present study relates diastolic LV stiffness and LV systolic performance to intensity of endomyocardial NO synthase (NOS) gene expression in dilated cardiomyopathy and in athlete's heart. Microtip LV pressures, conductance-catheter or angiographic LV volumes, echocardiographic LV wall thicknesses and snap-frozen LV endomyocardial biopsies were obtained in 33 patients with dilated cardiomyopathy and in three professional cyclists referred for sustained ventricular tachycardia. Intensity of LV endomyocardial inducible NOS (NOS2) and constitutive NOS (NOS3) gene expression was determined using quantitative reverse transcription-polymerase chain reaction (RT-PCR). Dilated cardiomyopathy patients with higher diastolic LV stiffness-modulus and lower LV stroke work had lower NOS2 and NOS3 gene expression at any given level of LV end-diastolic wall stress. The intensity of NOS2 and NOS3 gene expression observed in athlete's heart was similar to dilated cardiomyopathy with low LV diastolic stiffness-modulus and preserved LV stroke work. High LV endomyocardial NOS gene expression is observed in athlete's heart and in dilated cardiomyopathy with low diastolic LV stiffness and preserved LV stroke work. Favourable effects on the hemodynamic phenotype of high LV endomyocardial NOS gene expression could result from a NO-mediated decrease in diastolic LV stiffness and a concomitant rise in LV preload reserve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.