Abstract
Biodegradation of shell material is widespread in the cool-water skeletal carbonate deposits on Scott shelf, northwestern Vancouver Island, and is especially evident in the large aragonitic bivalves, Glycymeris and Humilaria, major primary sediment contributors. Ten types of endolithic microborings have been identified in the shells, including representatives of green algae (e.g., Ostreobium quekettii), blue-green algae (e.g., Plectonema terebrans, ?Scytonema sp.), fungi, bacteria and clionid sponges, as well as macroborings of phoronids, polychaetes and naticid gatropods. Microcrystalline carbonate is not precipitated in vacated bores. Boring physically weakens the shells, rendering them more prone to mechanical abrasion during sediment transport and bioturbation, and to biological abrasion by grazing benthos. Tumbling experiments demonstrate that the rate of carbonate mud production is much greater for bored as compared to fresh bivalve shells, and that mud production rates decrease with tumbling time because most endolithic microborings are confined to the periphery of grains. Boring also increases significantly the porosity and surface area of skeletal grains, and destroys their organic matrix, making them susceptible to maceration and dissolution on cool-water shelves. Fostered by the generally low rates of carbonate production and accumulation, many aragonitic bivalve shells on Scott shelf have become thoroughly degraded through a combination of endolithic microboring, maceration and dissolution within about 1000 years in ambient sea water. In geologic terms, such selective taphonomic loss of skeletal material may be considerable in ancient temperate-shelf limestones and should be evaluated when interpreting their paleoecology and paleoenvironments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.