Abstract

Radiofrequency ablation (RFA) can be a therapeutic option in medically inoperable lung cancer patients. In this study, we evaluated a prototype bipolar RFA device applicator that can be deployed from a standard endobronchial ultrasound (EBUS) bronchoscope to determine feasibility and histopathological analysis in animal models. Rabbit lung cancers were created by transbronchial injection of VX2 rabbit cancer cells. Once the tumors were developed, they were ablated transpleurally, under EBUS guidance using the prototype RFA device. The animals were then sacrificed for specimen resection. Pig inflammatory lung pseudo-tumors and lymphadenopathy were created by transbronchial injection of a talc paste and ablated transbronchially under EBUS guidance. Pigs were evaluated at 5 days, 2 weeks, and 4 weeks following ablation by bronchoscopy and cone beam computed tomography before necropsy. Nicotinamide adenine dinucleotide hydrogen diaphorase staining was employed to measure the ablation area. Twenty-four VX2 rabbit tumors were ablated. The total ablated area ranged from 0.6 to 3.0 cm2 (mean: 1.8 cm2), corresponding to a total energy range of 1 to 6 kJ. Six pig lung pseudo-tumors and 5 mediastinal lymph nodes were ablated. Adjacent airway ulceration was observed in 3 ablations of lymph nodes. These airway complications resolved within 4 weeks of RFA without any treatment. There was no hemoptysis, air embolism, respiratory distress, or other serious complication noted. In these 2 animal models, we provide evidence that EBUS-guided bipolar RFA is feasible and histopathology shows that can ablate lung tumors and mediastinal lymph nodes under real-time ultrasound guidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.