Abstract
The p86 subunit of eukaryotic initiation factor-(iso)4F from wheat germ exhibits saturable and substoichiometric binding to maize microtubules, induces microtubule bundling in vitro, and is colocalized or closely associated with cortical microtubule bundles in maize root cells, indicating its function as a microtubule-associated protein (MAP). The effects of p86 on the growth of short, taxol-stabilized maize microtubules were investigated. Pure microtubules underwent a gradual length redistribution, an increase in mean length, and a decrease in number concentration consistent with an end-to-end annealing mechanism of microtubule growth. Saturating p86 enhanced the microtubule length distribution and produced significantly longer and fewer microtubules than the control, indicating a facilitation of annealing by p86. Confirmation of endwise annealing rather than of dynamic instability as the mechanism for microtubule growth was made using mammalian MAP2, which also promoted the redistribution of length, increase in mean length, and decrease in number concentration of taxol-stabilized maize microtubules. Enhancement of microtubule growth occurred concomitant with bundling by p86, indicating that an alignment of microtubules in bundles facilitated endwise annealing kinetics. The results demonstrate that nonfacile plant microtubules can spontaneously elongate by endwise annealing and that MAPs enhance the rate of annealing. The p86 subunit of eukaryotic initiation factor-(iso)4F may be an important regulator of microtubule dynamics in plant cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.