Anesthesiology | VOL. 133
Read
End-tidal to Arterial Gradients and Alveolar Deadspace for Anesthetic Agents.
Abstract
According to the "three-compartment" model of ventilation-perfusion ((Equation is included in full-text article.)) inequality, increased (Equation is included in full-text article.)scatter in the lung under general anesthesia is reflected in increased alveolar deadspace fraction (VDA/VA) customarily measured using end-tidal to arterial (A-a) partial pressure gradients for carbon dioxide. A-a gradients for anesthetic agents such as isoflurane are also significant but have been shown to be inconsistent with those for carbon dioxide under the three-compartment theory. The authors hypothesized that three-compartment VDA/VA calculated using partial pressures of four inhalational agents (VDA/VAG) is different from that calculated using carbon dioxide (VDA/VACO2) measurements, but similar to predictions from multicompartment models of physiologically realistic "log-normal" (Equation is included in full-text article.)distributions. In an observational study, inspired, end-tidal, arterial, and mixed venous partial pressures of halothane, isoflurane, sevoflurane, or desflurane were measured simultaneously with carbon dioxide in 52 cardiac surgery patients at two centers. VDA/VA was calculated from three-compartment model theory and compared for all gases. Ideal alveolar (PAG) and end-capillary partial pressure (Pc'G) of each agent, theoretically identical, were also calculated from end-tidal and arterial partial pressures adjusted for deadspace and venous admixture. Calculated VDA/VAG was larger (mean ± SD) for halothane (0.47 ± 0.08)...
Concepts
Full-text Article Desflurane Residual Isoflurane Partial Pressures A-a Gradients Sevoflurane Lower Blood Solubility Halothane End-tidal Partial Pressures
Introducing Weekly Round-ups!Beta
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Jan 16, 2023 to Jan 22, 2023
Carbon capture and utilization (CCU) is an emerging technology with commercial potential to convert atmospheric carbon dioxide (CO2) into net zero or ...
Read MoreQuality Of Education Research Articles published between Jan 16, 2023 to Jan 22, 2023
Introduction: The Educational Scholar Program (ESP) is a creative method to focus on the quality of education and the scholarship of education. The ed...
Read MoreGender Equality Research Articles published between Jan 16, 2023 to Jan 22, 2023
This study deviates from the predominantly feminist/critical school of thought associated with existing gender studies to apply an interpretivist appr...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.