Abstract

Converting waste to resource may mitigate environmental pollution and global resource limitation. The platform chemical lactic acid can be produced from biowaste and its liquid fraction after solid–liquid separation. A fermentation step for lactic acid production prior to the conversion of biowaste to methane and organic fertilizer would increase the biowaste’s value. Despite the huge potential and promising results of the treatment procedure, the reasons for efficiency loss observed previously need to be addressed in order to pave the way for an up-scaling of the fermentation process. Therefore, biowaste was fermented applying pH control, acid extraction and glucose addition in order to counteract reasons such as acidification, end-product inhibition and carbon limitation, respectively. The fermentation was competitive compared to other renewable lactic acid production substrates and reached a maximum productivity of >5gClactic acidg−1Ch−1 and a concentration exceeding 30gL−1. A combination of acidification and end-product inhibition was identified as major obstacle. Lactobacillus crispatus and its closest relatives were identified as key lactic acid producers within the process using Miseq Illumina sequencing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.