Abstract
Encroaching lists are a generalization of monotone sequences in permutations. Since ordered permutations contain fewer encroaching lists than random ones, the number of such listsm provides a measure of presortedness with advantages over others in the literature. Experimental and analytic results are presented to cast light on the properties of encroaching lists. Also, we describe a new sorting algorithm,melsort, with complexityO(nlogm). Thus it is linear for well ordered sets and reduces to mergesort andO(nlogn) in the worst case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.