Abstract

This study focuses on investigating the EVAHEART 2 left ventricular assist device (LVAD) toward designing optimal pump speed modulation (PSM) algorithms for encouraging aortic valve (AV) flow. A custom-designed virtual patient hemodynamic model incorporating the EVAHEART 2 pressure-flow curves, cardiac chambers, and the systemic and pulmonary circulations was developed and used in this study. Several PSM waveforms were tested to evaluate their influence on the mean arterial pressure (MAP), cardiac output (CO), and AV flow for representative heart failure patients. Baseline speeds were varied from 1,600 to 2,000 rpm. For each baseline speed, the following parameters were analyzed: 1) PSM ratio (reduced speed/baseline speed), 2) PSM duration (3-7 seconds), 3) native ventricle contractility, and 4) patient MAP of 70 and 80 mm Hg. More than 2,000 rpm virtual patient scenarios were explored. A lower baseline speed (1,600 and 1,700 rpm) produced more opportunities for AV opening and more AV flow. Higher baseline speeds (1,800 and 2,000 rpm) had lower or nonexistent AV flow. When analyzing PSM ratios, a larger reduction in speed (25%) over a longer PSM (5+ seconds) duration produced the most AV flow. Lower patient MAP and increased native ventricle contractility also contributed to improving AV opening frequency and flow. This study of the EVAHEART 2 LVAD is the first to focus on leveraging PSM to enhance pulsatility and encourage AV flow. Increased AV opening frequency can benefit aortic root hemodynamics, thereby improving patient outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.