Abstract

Encoding schemes are systematic large-scale arrangements that convert incoming sensory information into a format required for further information processing. The increased spatial resolution of brain images obtained with ultra-high field magnetic resonance imaging at 7 T (7T-MRI) and above increases the granularity and precision of processing units that mediate the link between neuronal encoding and functional readouts. Here, these new developments are reviewed with a focus on human tactile encoding schemes derived from small-scale processing units (in the order of 0.5–5 mm) that are relevant for theoretical and practical concepts of somatosensory encoding and cortical plasticity. Precisely, we review recent approaches to characterize meso-scale maps, layer units, and cortical fields in the sensorimotor cortex of the living human brain and discuss their impact on theories of perception, motor control, topographic encoding, and cortical plasticity. Finally, we discuss concepts on the integration of small-scale processing units into functional networks that span multiple topographic maps and multiple cortical areas. Novel research areas are highlighted that may help to bridge the gap between cortical microstructure and meta-topographic models on brain anatomy and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.