Abstract

Enantioselective reduction of ketones, particularly acetophenones, by polymethylhydrosiloxane (PMHS) to the corresponding secondary alcohols can be achieved with high yields and enantiomeric excesses (ee's) up to 88% in the presence of chiral zinc catalysts (eq 1). Two catalytic systems have been developed giving similar ee's: (i) System A: ZnEt2 + chiral diimine or diamine 1−10. (ii) System B: Zn(carboxylate)2 + chiral diamine activated by Vitride. System B is inexpensive, stable, and ready to use in toluene, providing either (R) or (S) chiral secondary alcohols with 70−80% ee in the presence of (S,S)- or (R,R)-N,N‘-ethylenebis(1-phenylethylamine) (ebpe, 6). The reduction has been carried out at the 1 kg scale without scale-up problems. The ligand is cheap and is recovered at the end of reaction by simple distillation from residues of the organic phase. Both precursors ZnMe2·(S,S)-ebpe (A) and Zn(dea)2·(S,S)-ebpe (B) for systems A and B, respectively, have been isolated and characterized by X-ray stru...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.