Abstract

In this paper, the initial steps towards the design of novel artificial metalloenzymes that exploit proteins as a second coordination sphere for traditional metal-ligand catalysis are described. Phage display was employed to select and study antibody fragments capable of recognizing hydrophobic BINOL derivatives designed to mimic BINAP, a widely used ligand in asymmetric metal-catalyzed reactions. The binding affinities of the selected antibodies towards a series of haptens were evaluated by using ELISA assays. A homology model of one of the most selective antibodies was constructed, and a computer-assisted ligand-docking study was carried out to elucidate the binding of the hapten. It was shown that, due to the hydrophobic nature of the haptens, a higher level of theoretical treatment was required to identify the correct binding modes. A small selection of the antibodies was found to discriminate between enantiomers and small structural modifications of the BINOL derivatives. The selectivities arise from hydrophobic interactions, and we propose that the identified set of antibodies provides a foundation for a novel route to artificial metalloenzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.