Abstract
Given prominent physicochemical similarities between H2O2 and water, we report a new strategy for promoting the peroxygenase activity of P450 enzymes by engineering their water tunnels to facilitate H2O2 access to the heme center buried therein. Specifically, the H2O2-driven activities of two native NADH-dependent P450 enzymes (CYP199A4 and CYP153AM.aq) increase significantly (by >183-fold and >15-fold, respectively). Additionally, the amount of H2O2 required for an artificial P450 peroxygenase facilitated by a dual-functional small molecule to obtain the desired product is reduced by 95%-97.5% (with ∼95% coupling efficiency). Structural analysis suggests that mutating the residue at the bottleneck of the water tunnel may open a second pathway for H2O2 to flow to the heme center (in addition to the natural substrate tunnel). This study highlights a promising, generalizable strategy whereby P450 monooxygenases can be modified to adopt peroxygenase activity through H2O2 tunnel engineering, thus broadening the application scope of P450s in synthetic chemistry and synthetic biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.