Abstract

Garbage collection (GC) in NAND flash can significantly decrease I/O performance in SSDs by copying valid data to other locations, thus blocking incoming I/O requests. To help improve performance, NAND flash utilizes various advanced commands to increase internal parallelism. Currently, these commands only parallelize operations across channels, chips, dies, and planes, neglecting the block level due to risk of disturbances that can compromise valid data by inducing errors. However, due to the triple-well structure of the NAND flash plane architecture, it is possible to erase multiple blocks within a plane, in parallel, without diminishing the integrity of the valid data. The number of page movements due to multiple block erases can be restrained so as to bound the overhead per GC. Moreover, more capacity can be reclaimed per GC which delays future GCs and effectively reduces their frequency. Such an Intra-Plane Parallel Block Erase (IPPBE) in turn diminishes the impact of GC on incoming requests, improving their response times. Experimental results show that IPPBE can reduce the time spent performing GC by up to 50.7% and 33.6% on average, read/write response time by up to 47.0%/45.4% and 16.5%/14.8% on average respectively, page movements by up to 52.2% and 26.6% on average, and blocks erased by up to 14.2% and 3.6% on average. An energy analysis conducted indicates that by reducing the number of page copies and the number of block erases, the energy cost of garbage collection can be reduced up to 44.1% and 19.3% on average.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.