Abstract

In this paper we propose a parameter-free grain boundary (GB) model for the meso-scale, employing it to effectively capture one-to-one twin pattern development across polycrystals (for the first time), by means of crystal plasticity finite element methods (CPFEM). Our model does not require higher-order mechanics, involve limiting length-scales, or demand special considerations for its FEM implementation. It derives all its data from that of its adjacent grains, which are modeled using single crystal plasticity. We apply our mesoscale GB model to experimentally imaged microstructures of Magnesium and Titanium. We demonstrate a clear ability to capture the prominent role of GBs in the nucleation and patterning of twins, with high spatiotemporal fidelity (approaching one-to-one), as compared to electron back-scattered diffraction (EBSD) maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.