ACS applied materials & interfaces
Read

Enabling a Large Accessible Surface Area of a Pore-Designed Hydrophilic Carbon Nanofiber Fabric for Ultrahigh Capacitive Deionization.

Publication Date Oct 23, 2020

Abstract

Although porous carbons have been widely used for capacitive deionization, the low accessible surface area because of the hydrophobic microporous structure results in unsatisfied desalination capacity, which drastically hinders their practical application. Herein, a novel carbon nanofiber fabric with a large accessible surface area was prepared by electrospinning using the uniformly dispersed ferrocene as a pore former. The carbon nanofiber fabric with good mechanical strength and flexibility can be directly used as a filter membrane to filter simulated sandy seawater. The high content of heteroatoms increases the surface polarity of the carbon nanofiber, while the well-controlled interconnected mesoporous structure of the optimized sample facilitates fast transport and adsorption of hydrated Na+ and Cl-. Thus, the hydrophilic carbon nanofiber fabric shows a Brunauer-Emmett-Teller surface area of 922 m2 g-1 and a large accessible surface area of 405 m2 g-1, leading to a high capacitance of 263 F g-1 in the NaCl electrolyte. Most importantly, it shows an ultrahigh desalination capacity of 19.34 mg g-1, which is much higher than most of the previously reported carbon materials. The high desalination capacity, fast adsorption rate, and good cycle stability make the as-prepared carbon nanofiber fabric an attractive candidate for practical application.

Concepts

Carbon Nanofiber Fabric Nanofiber Capacitive Deionization Desalination Capacity Accessible Surface Large Accessible Surface Area Desalination High Desalination Capacity Carbon Nanofiber Carbon

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.