Abstract

In order to improve the emulsifying properties of soy protein around isoelectric point, soy protein isolate (SPI) and γ-polyglutamic acid (γ-PGA) complexes were prepared by electrostatic interaction. The formation of SPI-γ-PGA electrostatic complex and emulsifying properties were investigated by monitoring turbidity, zeta potential, intrinsic fluorophores, emulsion characterization, and microstructure observation. The results showed that the formation of SPI-γ-PGA electrostatic complex was identified through turbidimetric analysis and zeta-potential measurement. Intrinsic fluorescence spectrum indicated internal structure changes of electrostatic complexes. Furthermore, SPI-γ-PGA complex-stabilized emulsions showed better stability with small droplet sizes and slow growth as well as the uniform microstructure around the isoelectric point (pH 4.0-5.0) than SPI-formed emulsions. Under the different thermal treatments and ionic strengths, emulsions stabilized by SPI-γ-PGA-soluble complex resulted in improved emulsion stability to environmental stresses. This may be attributed to the increased steric repulsion and electrostatic repulsion by SPI-γ-PGA complexes at oil-water interfaces. The findings derived from this research would provide theoretical reference about SPI-γ-PGA electrostatic complex that can be applied in acid beverages and developed a novel plant-based sustainable stabilizer for emulsions. PRACTICAL APPLICATION: The electrostatic interaction between SPI and γ-PGA improved the emulsifying characteristics of soy protein around isoelectric point. The results derived from this research would expand applications of SPI-γ-PGA-soluble electrostatic complex that can be applied in acid beverages, as well as a novel plant-based sustainable stabilizer for emulsions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.