Abstract
An approach for emulating quantum circuits using conventional analog hardware is presented based on the intuitive similarity between fuzzy logic and quantum superposition, as well as some geometrical analogies. This approach has the advantage of being easy to implement on dedicated hardware for parallel processing of membership functions and fuzzy inference, compared to conventional quantum computing, which requires quantum mechanical systems which are extremely sensitive to noise and difficult to extend to large scale systems. Using geometrical analogies and a suitable transformation, qubits are modeled as pairs of fuzzy membership functions evolving on the unit square and basic one qubit gates are modeled as transformations on this unit square. A fuzzy implementation of the one bit and two bit Deutsch-Jozsa algorithm is proposed. Physical implementation and advantages, such as the possibility of implementing nonlinear or non-unitary gates, as well as drawbacks of the proposed model compared to conventional quantum computing are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.