Abstract

Finding an appropriate new anode material with high electrochemical performance for lithium-ion batteries (LIBs) is considered one of the significant challenges for both the academic and industrial research communities. Herein, we propose to explore the efficiency of a newly designed two-dimensional (2D) material, named orthorhombic dialuminium dinitride (o-Al2N2), as an alternative anode material for LIB systems through first-principles calculations and ab initio molecular dynamics (AIMD) simulations. The obtained results show that orthorhombic-Al2N2 exhibits a high specific capacity of 1144.2913 mAhg−1, an operating voltage around 0.575 V, and a low kinetic diffusion barrier of 0.26 eV. These results prove the suitability of the o-Al2N2 monolayer as a promising anode material for LIBs with high structural stability, strong binding energy towards lithium adsorbent, fast lithium diffusion, and a high theoretical capacity. These features rank the 2D o-Al2N2 monolayer among the best choices for the anode part of the next-generation rechargeable LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.