Abstract

AbstractIntrinsically stable materials are desirable for constructing energy storage devices, which aim to demonstrate durability under the harsh electrochemical conditions that are detrimental to their lifespan. However, it is demonstrated here that the intrinsic instability of an electrochemical interface can be converted from an obstacle into an advantage. In aqueous zinc‐ion batteries, manganese oxide (MnO2) exhibits considerable dissolution even in electrolyte containing Mn2+ salt. Balancing with redeposition alleviates the harmful impact of dissolution on performance and alters the trajectory of the active phase. Inclusion of Mn2+ salt in the electrolyte induces MnO2 deposition on all conductive surfaces, requiring that distracting side reactions be eliminated to isolate the dynamics of the active phase. Under conditions favoring dissolution, capacity decreases dramatically and a highly crystalline tetragonal ZnMn2O4 phase forms, while redeposition helps maintain capacity and promotes a disordered cubic Zn‐rich phase. Ultimately, this work aims to illuminate a path forward to unlock the potential of batteries made with materials that are fundamentally unstable in their operating environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.