Abstract

Well-structured transition systems (WSTS) are a broad and well-studied class of infinite-state systems, for which the problem of verifying the reachability of an upward-closed set of error states is decidable (subject to some technicalities). Recently, Bingham proposed a new algorithm for this problem, but applicable only to the special cases of broadcast protocols and petri nets. The algorithm exploits finite-state symbolic model checking and was shown to outperform the classical WSTS verification algorithm on a contrived example family of petri nets. In this work, we generalize the earlier results to handle a larger class of WSTS, which we dub nicely sliceable, that includes broadcast protocols, petri nets, context-free grammars, and lossy channel systems. We also add an optimization to the algorithm that accelerates convergence. In addition, we introduce a new reduction that soundly converts the verification of parameterized systems with unbounded conjunctive guards into a verification problem on nicely sliceable WSTS. The reduction is complete if a certain decidable side condition holds. This allows us to access industrially relevant challenge problems from parameterized memory system verification. Our empirical results show that, although our new method performs worse than the classical approach on small petri net examples, it performs substantially better on the larger examples based on real, parameterized protocols (e.g., German's cache coherence protocol, with data paths).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.