Abstract

The multi-objective spanning tree (MoST) is an extension of the minimum spanning tree problem (MST) that, as well as its single-objective counterpart, arises in several practical applications. However, unlike the MST, for which there are polynomial-time algorithms that solve it, the MoST is NP-hard. Several researchers proposed techniques to solve the MoST, each of those methods with specific potentialities and limitations. In this study, we examine those methods and divide them into two categories regarding their outcomes: Pareto optimal sets and Pareto optimal fronts. To compare the techniques from the two groups, we investigated their behavior on 2, 3 and 4-objective instances from different classes. We report the results of a computational experiment on 8100 complete and grid graphs in which we analyze specific features of each algorithm as well as the computational effort required to solve the instances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.