Abstract
In this paper, we apply the empirical likelihood method to study the partially time-varying coefficient models with a random design and a fixed design under dependent assumptions. A nonparametric version of Wilks’ theorem is derived for the fixed-design case. For the random-design case, it is proved that the empirical log-likelihood ratio of the regression parameters admits a limiting distribution with a weighted sum of independent chi-squared distributions. In order that Wilks’ phenomenon holds, we propose an adjusted empirical log-likelihood (ADEL) ratio for the regression parameters. The ADEL is shown to have a standard chi-squared limiting distribution. Simulation studies are undertaken to indicate that the proposed methods work better than the normal approximation-based approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.