Abstract
Users of wearable services are different in age, occupation, income, education, personality, values and lifestyle, which also determine their different consumption patterns. Therefore, for the trust of wearable services, the influencing factors or strength may not be the same for different users. This article starts with the resource and motivation dimensions of VALSTM model, and the clustering model and questionnaire scale for consumers of wearable services were constructed. And then the users and potential users of wearable service are clustered by an improved clustering algorithm based on adaptive chaotic particle swarm optimization. Through clustering analysis of 535 valid questionnaires, users are grouped into three types of consumers with different lifestyles, respectively named: trend-following users, fashion-leading users and economic-rational users. Finally, this paper analyzes and compares the trust subgroup models of three clusters, and draws some conclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.