Abstract

The crystal structure of a conserved tubulin-binding region of the EML1 protein reveals a highly atypical fold in one of its β-propeller domains. Disruption of the EML1 core region domain in many of the oncogenic EML4-ALK fusion protein variants that drive non-small cell lung cancer explains their dependence on the HSP90 molecular chaperone, provides a basis to allow more precise patient stratification for therapy, and suggests a more general model for other oncogenic fusion proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.