Abstract
The control of the spontaneous emission properties of quantum emitters with limited losses by near-field coupling with plasmons-supporting nanostructures is one of the keys for next-generation high-efficiency and high-coherence plasmonic devices. In the present work, gold nanohole arrays are demonstrated to be an effective plasmonic system for controlling radiative rate and quantum efficiency of the 1540 nm emission of Er3+ ions embedded in silica. Finite element method electrodynamic simulations were used to describe the interaction between dipolar Er3+ emitters and the nanohole arrays. The results are in agreement with those of photoluminescence measurements performed in different coupling configurations. Particularly, we demonstrated that owing to the combination of strong emission enhancement and low level of ohmic losses in the metal, nanohole arrays are able to enhance the far-field photon yield up to 74%. This in turn is related to an extremely high far-field quantum efficiency: more than 90% of th...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.