Abstract
The specific features of the emission characteristics of GaAs-based heterostructures with a GaAs1 − xSbx-InyGa1 − yAs bilayer quantum well are studied. The heterostructures are grown by metal-organic chemical vapor deposition (MOCVD). With an analysis of previously reported data on the MOCVD growth process taken into account, the temperature range (560–580°C), the relation between the fluxes emitted by the sources of Group-V and −III elements (≲1), and the order of layer growth for the production of the active region of a GaAs/InGaP laser heterostructure are determined experimentally. The active region is a GaAs0.75Sb0.25-In0.2Ga0.8As bilayer quantum well. For the structure, a 1075-nm electroluminescence signal attributed to indirect transitions between the valence band of the GaAs0.75Sb0.25 layer and the conduction band of the In0.2Ga0.8As layer is observed. An increase in the continuous-wave pump current yields a decrease in the 1075-nm emission intensity and initiates stable lasing at a wavelength of 1022 nm at a threshold current density of 1.4 kA cm−2 at room temperature. Lasing occurs at transitions direct in coordinate space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.