Abstract

This study reports the measurement of 1,3-butadiene emissions from 30 petrol-driven vehicles from the Australian car fleet using the Australian Design Rule 37/00 vehicle test procedure. Six of the cars tested were not equipped with catalytic converters and used leaded petrol as fuel. The remaining 24 cars were fitted with catalytic converters and used unleaded petrol. 1,3-Butadiene in exhaust samples was found to degrade rapidly in SUMMA treated stainless steel canisters and the degradation followed first-order kinetics. The rate coefficient of the decay can be represented by a linear dependence on the concentration of nitrogen oxides in the exhaust ( r 2 = 0.79, n = 43), and the gas-phase reaction of NO 2 and 1,3-butadiene may have a major role in this loss. The 1,3-butadiene concentrations used to estimate vehicle emissions were corrected for this loss using the decay rate constant either observed from replicate analyses or from the NO x concentrations in the samples. The measurements showed that 1,3-butadiene was emitted at a rate of 20.7 ± 9.2 mg km −1 from 6 non-catalyst vehicles. There was considerable scatter in the observations from catalyst equipped vehicles and we infer that this was due to the malfunction of the emission control devices on some vehicles. The 19 vehicles that appeared to have functioning catalyst emission control devices had an average emission rate of 2.1 ± 1.5 mg km −1. These emission rates are consistent with atmospheric observations and are much higher than those reported previously. We calculate that more than 90% of the 1,3-butadiene in engine exhaust comes from the common alkane and aromatic constituents of the fuel. A comparison of emissions in the different phases of the drive cycle indicates that current emission controls remove more than 90% of the 1,3-butadiene from the initial exhaust mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.