Abstract

This paper is the second one of a series of papers on the redshift distribution of QSOs. In this paper, we shall study the influence of the selection effect in the identification of emission lines on the redshift distribution of QSOs more thoroughly than the previous paper (Zhouet al., 1983). If we assume that the QSO's redshift is cosmological, adopt the standard model, and consider the selection effect due to the redshift identification, the limiting apparent magnitude in the observation and the evolutionary effect of QSOs, we can compute the emission line redshift distribution for the so-called optically selected QSOs discovered by objective prism, grating prism technique alone, the QSOs discovered by positional methods or by colour technique and for whole QSOs, respectively (see Figures 6, 11, 12). The results of computation agree with the observations very well, especially for optically selected QSOs; the computational distribution has almost the same shape with the observational one. For this kind of the QSOs the computational distribution may give the positions and heights of all these observed peaks. The correlation coefficient γ between the calculated and observed distributions is larger than 0.95. It shows that (a) the peaks and dips in the redshift distribution of QSOs are mainly caused by the selection effect in the redshift identification, and (b) the redshift of QSOs is cosmological.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.