Abstract
Transition-metal-dichalcogenides (TMDs), which exhibit an indirect electronic band gap as bulk crystals, can become direct semiconductors in the monolayer phase [1]. Such monolayer TMDs show unique optical properties arising from the strong two-dimensional confinement of excitons as well as from the reduction in crystal symmetry. However, the strong mismatch in length scale between the sub-nanometer thickness of an atomically thin crystal sheet and the wavelength of propagating infrared or visible light leads to a rather weak light-matter interaction. By tailoring the near-field environment of monolayer TMDs, resonant optical antennas can strongly modify the excitation response [2]. While research efforts targeted at tailoring and enhancing light-matter interactions in monolayer TMDs have so far been limited to plasmonic nanoantennas, here we concentrate on high-index dielectric nanoantennas, which can show negligible intrinsic losses and thus a high radiation efficiency in the visible and near-infrared spectral range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.