Abstract
Global warming and climate change are among the most immediate challenges confronting humans in the 21st century. Artificial photosynthesis represents a promising approach to mitigating the environmental crisis. Recently, people demonstrated that interfacing semiconductor, polymer, or metal-based nanomaterials with specific bacteria can generate built-in artificial photosynthetic systems, enabling solar-to-fuel conversion by forming a basic photosynthetic unit from a network of light-harvesting receptors, molecular water splitting and CO2, or proton reduction machinery. As a cutting-edge research direction, several strategies have been employed to create the artificial photosynthetic biohybrids. Notably, understanding of the molecular basis of these photosynthetic biohybrid systems is the key to improving the solar-to-chemical conversion efficiency. In the current review, we highlight the study of charge uptake channels in biohybrid artificial photosynthetic systems using various nanomaterials and microbes. We emphasize the importance of fully understanding the structures and operating mechanisms of these hybrid systems, as well as the criterion to select suitable microbes and photosensitized nanomaterials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.