Abstract

Mounting evidence has revealed that the therapeutic efficacy of immunotherapies is restricted to a small portion of cancer patients. A deeper understanding of how metabolic reprogramming in the tumor microenvironment (TME) regulates immunity remains a major challenge to tumor eradication. It has been suggested that metabolic reprogramming in the TME may affect metabolism in immune cells and subsequently suppress immune function. Tumor cells compete with infiltrating immune cells for nutrients and metabolites. Notably, the immunosuppressive TME is characterized by catabolic and anabolic processes that are critical for immune cell function, and elevated inhibitory signals may favor cancer immune evasion. The major energy sources that supply different immune cell subtypes also undergo reprogramming. We herein summarize the metabolic remodeling in tumor cells and different immune cell subtypes and the latest advances underlying the use of metabolic checkpoints in antitumor immunotherapies. In this context, targeting both tumor and immune cell metabolic reprogramming may enhance therapeutic efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.