Abstract

Recent experiments on magic-angle twisted bi-layer graphene have attracted intensive attention due to exotic properties such as unconventional superconductivity and correlated insulation. These phenomena were often found at a magic angle less than 1.1°. However, the preparation of precisely controlled bi-layer graphene with a small magic angle is challenging. In this work, electronic properties of large-angle twisted bi-layer graphene (TBG) under pressure are investigated with density functional theory. We demonstrate that large-angle TBG can display flat bands nearby the Fermi level under pressure, which may also induce interesting properties such as superconductivity which have only been found in small-angle TBG at ambient pressure. The Fermi velocity is found to decrease monotonously with pressure for large twisted angles, e.g., 21.8°. Our work indicates that applying pressure provides opportunities for flat-band engineering in larger angle TBG and supports further exploration in related investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.