Abstract

In an age where digitization is widespread in clinical and preclinical workflows, pathology is still predominantly practiced by microscopic evaluation of stained tissue specimens affixed on glass slides. Over the last decade, new high throughput digital scanning microscopes have ushered in the era of digital pathology that, along with recent advances in machine vision, have opened up new possibilities for Computer-Aided-Diagnoses. Despite these advances, the high infrastructural costs related to digital pathology and the perception that the digitization process is an additional and nondirectly reimbursable step have challenged its widespread adoption. Here, we discuss how emerging virtual staining technologies and machine learning can help to disrupt the standard histopathology workflow and create new avenues for the diagnostic paradigm that will benefit patients and healthcare systems alike via digital pathology.

Highlights

  • The application of computational techniques to biomedical imaging is almost a century-old practice

  • While much of the initial push toward slide digitization came from interest in research and development toward, e.g., machine learning-assisted diagnosis [1], recent advancements in imaging technologies, and image reconstruction and transformation algorithms have created new opportunities that have the potential to change the landscape of how pathology is practiced

  • Doctors, and researchers look to exploit the many benefits of digital histology, the financial challenges involved with transforming histology review platforms from microscope-based to purely digital will continue to exist as a barrier to wide-scale adoption for some more time

Read more

Summary

Introduction

The application of computational techniques to biomedical imaging is almost a century-old practice. While much of the initial push toward slide digitization came from interest in research and development toward, e.g., machine learning-assisted diagnosis [1], recent advancements in imaging technologies, and image reconstruction and transformation algorithms have created new opportunities that have the potential to change the landscape of how pathology is practiced. These emerging technologies, which will be BME Frontiers discussed in this article, aim to disrupt the histopathology process from the surgery room to the pathology lab, all the way to the telepathology diagnostic portal

Microscopic Contrast in Tissue Imaging
Deep Learning-Based Virtual Staining
Discussion and Outlook
Materials and Methods
Conflicts of Interest
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.