Abstract

The tensor model is discussed as theory of dynamical fuzzy spaces and as a way to formulate gravity on fuzzy spaces. From numerical analyses, it is shown that the low‐lying long‐wavelength fluctuation spectra around Gaussian background solutions in the tensor model are in agreement with the geometric fluctuations on flat spaces in the general relativity. It is also shown that part of the orthogonal symmetry of the tensor model spontaneously broken by the backgrounds correspond to the local translation symmetry of the general relativity. Thus the tensor model can provide an interesting model of simultaneous emergence of space and the general relativity including the local translation symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.