Abstract

Fucoid zygotes are model cells for the study of symmetry breaking in plants. After fertilization, their initial spherical symmetry reduces to an axial symmetry, even in the absence of any external cue. This indicates that zygotes have an intrinsic ability to break symmetry in a way that is solely dependent on their internal biochemical and/or biophysical state. In our opinion, symmetry breaking is a self-organized process. It arises around the fucoid zygotes from the ion dynamics through channels (voltage-dependent calcium channels and a potassium leak) and outside the membrane (electrodiffusion owing to slower calcium diffusion compared with potassium). The robustness of this self-organized process and its lability ensure its relevance in plants where symmetry breaking is correlated with transcellular ion currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.