Abstract

The technique of self-sustained sequence replication allows isothermal amplification of DNA and RNA molecules in vitro. This method relies on the activities of a reverse transcriptase and a DNA-dependent RNA polymerase to amplify specific nucleic acid sequences. We have modified this protocol to allow selective amplification of RNAs that catalyze a particular chemical reaction. During an in vitro RNA evolution experiment employing this modified system, a unique class of "selfish" RNAs emerged and replicated to the exclusion of the intended RNAs. Members of this class of selfish molecules, termed RNA Z, amplify efficiently despite their inability to catalyze the target chemical reaction. Their amplification requires the action of both reverse transcriptase and RNA polymerase and involves the synthesis of both DNA and RNA replication intermediates. The proposed amplification mechanism for RNA Z involves the formation of a DNA hairpin that functions as a template for transcription by RNA polymerase. This arrangement links the two strands of the DNA, resulting in the production of RNA transcripts that contain an embedded RNA polymerase promoter sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.