Abstract
Irradiation damage caused by neutron irradiation below 425–450 °C of 9–12% Cr ferritic/martensitic steels produces microstructural defects that cause an increase in yield stress. This irradiation hardening causes embrittlement observed in a Charpy impact test as an increase in the ductile–brittle transition temperature. Little or no change in strength is observed in steels irradiated above 425–450 °C. Therefore, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study, significant embrittlement was observed in F82H steel irradiated at 500 °C to 5 and 20 dpa without any change in strength. Earlier studies on several conventional steels also showed embrittlement effects above the irradiation-hardening temperature regime. Indications are that this embrittlement is caused by irradiation-accelerated or irradiation-induced precipitation. Observations of embrittlement in the absence of irradiation hardening that were previously reported in the literature have been examined and analyzed with computational thermodynamics calculations to illuminate and understand the effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.