Abstract

Hyperactivation of Sonic Hedgehog (SHH) signaling pathway drives tumor progression in the largest medulloblastoma subgroup. During cerebellar development, promoters of SHH target genes show inhibitory trimethylation of histone H3 at lysine 27 (H3K27me3), mediated by the Polycomb Repressive Complex 2 (PRC2). Here, we explored the regulation of cerebellar growth and medulloblastoma tumorigenesis by PRC2 complex components EED and EZH2. For developmental studies, we conditionally deleted Eed or Ezh2 in the Atoh1 lineage that gives rise to the cerebellar granule neuron progenitors (CGNP) that are cells of origin for SHH medulloblastomas. For tumor studies, we bred the conditional Eed- or Ezh2-deleted mouse lines with mice genetically engineered to develop SHH medulloblastoma. Our developmental studies showed that Eed was absolutely required for cerebellar growth. Eed-deleted CGNPs underwent aberrant, myocyte-like differentiation and spontaneous apoptosis, resulting in cerebellar hypoplasia. In contrast, Ezh2 deletion produced no developmental phenotype, despite blocking all H3K27me3 in CGNPs. Our tumor studies showed that Eed-deleted medulloblastomas similarly showed aberrant, myocyte differentiation, but unlike CGNPs, did not undergo widespread apoptosis. Eed-deleted medulloblastomas progressed more rapidly than control tumors, indicating that the inappropriate, muscle-like differentiation did not slow tumor growth. Ezh2-deleted medulloblastomas similarly progressed more rapidly than controls. Our data show that the PRC2 complex acts to enforce neuronal lineage commitment in both development and tumorigenesis and to restrain tumor growth in SHH medulloblastoma. Myocyte differentiation in Eed-deleted tumors suggests that PRC2 loss of function may contribute to the medullomyoblastomas that have been observed in patients. The differences in developmental phenotype show that EZH2 and EED functions are non-identical and can be dissociated, while similar increase in tumor progression show tumor suppressive functions for both EED and EZH2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.