Abstract

Animals rely on the elasticity of their tendons and muscles to execute robust and efficient locomotion patterns for a vast and continuous range of velocities. Replicating such capabilities in artificial systems is a long-lasting challenge in robotics. By taking advantage of a pitch dynamics decoupling spring potential, this work aims to provide design rules and a control strategy to generate dynamic, efficient locomotion patterns in quadrupeds moving in a sagittal plane. We rely on nonlinear modal theory, which provides the tools to characterize continuous families of efficient oscillations in nonlinear mechanical systems. We provide simulations of an elastic quadruped showing that the proposed solution can robustly excite efficient locomotion patterns under non-ideal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.