Abstract

Fractional-order calculus presents a novel modeling approach for systems with extraordinary dynamical properties by introducing the notions of derivatives and integrals of noninteger order. In system theory this gives rise to extensions to linear, time invariant systems to enhance the description of complex phenomena involving memory or hereditary properties of systems. Standard industrial controllers, such as the PID controller and lead-lag compensator, have also been updated to benefit from the effects of noninteger integration and differentiation, and have advantages over classical controllers in case of both conventional and fractional-order process control. However, given the definitions of fractional operators, accurate digital implementation of fractional-order systems and controllers is difficult because it requires infinite memory. In this work we study the digital implementation of a fractional-order PID controller based on an infinite impulse response (IIR) filter structure obtained by applying the Oustaloup recursive filter generation technique. Software for generating digital fractional-order is developed and tested on an Atmel AVR microcontroller. The results are verified using a MATLAB/Simulink based real-time prototyping platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.