Abstract

An investigation of turbulent boundary layers (TBLs) is presented for a NACA0012 airfoil at angles of attack 9 and 12 deg. Wall-resolved large eddy simulations (LES) are conducted for a freestream Mach number M=0.2 and chord-based Reynolds number Re=4×105, where the boundary layers are tripped near the airfoil leading edge on the suction side. For the angles of attack analyzed, mild, moderate and strong adverse pressure gradients (APGs) develop over the airfoil. Despite the strong APGs, the mean flow remains attached along the entire airfoil suction side. Similarly to other APG-TBLs investigated in the literature, a secondary peak appears in the Reynolds stress and turbulence production profiles. This secondary peak arises in the outer layer and, for strong APGs, it may overcome the first peak typically observed in the inner layer. The analysis of the turbulence production shows that other components of the production tensor become important in the outer layer besides the shear term. For moderate and strong APGs, the mean velocity profiles depict three inflexion points, the third being unstable under inviscid stability criteria. In this context, an embedded shear layer develops along the outer region of the TBL leading to the formation of two-dimensional rollers typical of a Kelvin–Helmholtz instability which are captured by a spectral proper orthogonal decomposition (SPOD) analysis. The most energetic SPOD spatial modes of the tangential velocity show that streaks form along the airfoil suction side and, as the APG becomes stronger, they grow along the spanwise and wall-normal directions, having a spatial support along the entire boundary layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.