Abstract

Fuzzy controllers are used in many applications because of their rapid design by translating heuristic knowledge, robustness against perturbations, and smoothness in the control action. However, they require parallel processing and special operators (such as fuzzification or defuzzification) which are not available at standard DSPs, thus making inefficient its direct implementation. This paper describes a design methodology which allows starting with any kind of fuzzy controller and subsequently transforming it until obtaining a system suitable for DSP implementation. Such methodology is aided by Xfuzzy 3, a design environment developed by some of the authors. The parking problem of an autonomous robot is described to illustrate the steps of this methodology. Experimental results show the efficiency of the designed fuzzy controller embedded into a stand-alone card based on a fixed-point DSP from Texas Instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.